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Abstract
We investigate the phase transition of a combination of a two-dimensional Potts
and an XY model where the coupling is multiplicative. As the XY model has
a Kosterlitz–Thouless transition and the Potts variable is constrained to three
states (yielding a second order transition), the order of the phase transition and
the universality class of the investigated combined model are far from obvious.
We find that the transition is shifted to a lower critical temperature while
the course of the internal energy is steeper compared to the two constituting
models. Still, we find strong indications that the transition is continuous. Our
model may serve as a coarse-grained description of surface-attached flexible
polymers, e.g. in the context of the extracellular matrix of living cells.

PACS numbers: 05.70.Fh, 05.50.+q

1. Introduction

Large systems of interacting polymers pose a significant challenge to computational
approaches. While one may study with standard Monte Carlo techniques the properties of
single polymers in detail (Binder 1996), larger systems are computationally challenging due to
their massive increase in the autocorrelation times. Hence, more coarse-grained approaches,
e.g. a coupling of well-known models of statistical mechanics, are helpful in elucidating the
phase behavior of such complex systems. The phase behavior of coupled models on the other
hand is also very interesting from a fundamental point of view, since they may belong to
another universality class than the constituting models.

Following this rationale, we defined a new statistical model by multiplicatively coupling
the two-dimensional XY model to the 3-state Potts model. This choice is motivated by the
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wish to understand the phase behavior of an array of interacting, surface-attached flexible
polymer backbones with single rigid side chains (Hellmann et al 2007), i.e. a minimal model
for the extracellular matrix of living cells. Here, the Potts degree of freedom may reflect
the height levels of the polymer backbones while the XY degree may describe the orientation
of the side chains. While the Potts model (with q < 4 states) undergoes a second-order
phase transition (Baxter 1973), the two-dimensional XY model shows a Kosterlitz–Thouless
transition (Kosterlitz and Thouless 1973). It is hence far from evident what kind of phase
transition will be encountered when multiplicatively coupling these two systems.

One way to approach the problem is to restrict the XY model to a pure two-state (Ising-like)
system and then (perturbatively) couple the 3-state Potts model to it. Due to the Ising-nature of
the unperturbed system, the resulting 6-state model should have a first-order phase transition.
However, taking the Potts model as the unperturbed system, the XY model can be viewed to
introduce annealed disorder to the Potts coupling constant which may result in a first-order
transition. In general, introducing quenched disorder to systems with a continuous phase
transition modifies the critical behavior and also the universality class (Harris 1974, Aharony
1978, Grinstein and Ma 1982, Berker 1984). It has also been suggested that a first-order phase
transition can change to second order due to the introduction of quenched disorder (Berker
and Hui 1991). Yet, little is known for the case of annealed disorder (which would be the
appropriate view in our case). An interesting study in this respect deals with the coupled
XY–Ising model (Granato et al 1991, Lee et al 1991) that shares some features with the
system we present here. Computer simulations uncovered a second-order phase transition
with critical exponents distinct from the Ising ones. Microscopically, XY disorder is driven by
Ising disorder.

Bearing this in mind, the coupled Potts–XY model deserves a close investigation apart
from its hypothetical application as a coarse-grained model for the extracellular matrix: it is
a random bond model with annealed disorder while, so far, the quenched case has been in
the focus (Wu 1982). The nature of its phase transition is far from obvious as it combines a
discrete and a continuous degree of freedom both showing different phase behaviors. Basic
simulations of a 3-state Potts model coupled to the XY model show that the transition is much
steeper and shifted to a lower temperature compared to the two constituting models. However,
in a more thorough analysis we find strong indications for a continuous transition and not
for a finite jump in the internal energy. The critical exponents γ /ν and 1/ν which we obtain
are clearly distinct from those of the genuine Potts model, hence implying a change of the
universality class.

2. Model

We start by motivating the construction of our Potts–XY model via a system of surface-
attached flexible polymers with a rigid side chain. Such a system forms, for example, the
gross structure of the extracellular matrix of living cells. As described previously (Hellmann
et al 2007), the basic unit of such an extracellular matrix may be reduced to a single flexible,
end-grafted backbone with a rigid side chain (figure 1). While a simulation of this unit yields
valuable insights into the stiffening of the individual backbone due to the attached rigid side
chain (also considered in other studies, as e.g. (Connolly et al 2005)), this amount of detailed
information may not be necessary to understand the generic behavior of the multi-complex
system. The basic quantities describing the interaction of many individual units are the height
p of the side chain above the substrate and its orientation θ (with respect to the y-axis). Thus,
the individual backbone side-chain complexes are interpreted as mutually interacting rotors
aligned on a regular two-dimensional lattice.
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Figure 1. On the left the model for the self-avoiding backbone side chain complex as described
in Hellmann et al (2007). To study a system of mutually interacting complexes another coarse-
graining step is taken, leading to a system of rotors on a two-dimensional lattice. The internal
degrees of freedom of each complex are reduced to the height p of the side chain above the substrate
and its orientation angle θ .

We assume here that the sites at which the backbones are attached to the substrate are
sufficiently far apart from each other so that any interaction between the complexes is mediated
by the side chains only. This also necessitates that side chains only interact when they have
the same height p. This aspect can be modeled by a Potts-type interaction (Potts 1952,
Wu 1982):

HP = −JP

∑

〈i,j〉
δpipj

; pi ∈ {0, 1, . . . , q − 1}. (1)

Here, pi denotes the height of the side chain i above the substrate, q is the total number of
allowed heights, and JP > 0 is the coupling constant.

The interaction between side chains having equal p will be considered as a nearest-
neighbor ferromagnetic interaction leading to a preferred parallel alignment of the side
chains. This kind of interaction seems plausible as a first approach since it mimics the
repulsive forces between side chains that may be due to steric or short-ranged electrostatic
potentials. Consequently, we use for this part of the interaction the two-dimensional XY model
Hamiltonian

HXY = −JXY

∑

〈i,j〉
SiSj = −JXY

∑

〈i,j〉
SiSj cos θij , (2)

where the coupling constant JXY > 0 and 〈i, j 〉 denotes a summation over nearest neighbors.
For simplicity, the length of the rotors (= side chains) Si = |Si | is set to unity while the angle
θij denotes the relative orientation of the side chains i and j .

Combining the above model equations (1) and (2) yields the Potts–XY model:

H = −J
∑

〈i,j〉
δpipj

· cos θij ; pi ∈ {0, 1, . . . , q − 1}. (3)

The two-dimensional Potts model is known to undergo a second-order phase transition for
q < 4 (Baxter 1973) while the XY model experiences a Kosterlitz–Thouless (KT) transition
(Kosterlitz and Thouless 1973, Kosterlitz 1974). For q = 3 our model equation (3) can be
interpreted as a 3-state Potts model with a randomly varying coupling strength Jij = J cos θij

between neighboring Potts spins i and j . As this local coupling may become very small and
even zero, the nature of the phase transition of the hybrid model may be characterized by
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effectively vacant bonds that are known to drive the transition of the (q < 4)-state Potts model
toward first order (Nienhuis et al 1979). Given this variety of phase behaviors, it appears
difficult to make predictions with respect to the coupled Potts–XY model a priori.

A system closely related to the model presented here is the coupled XY–Ising model that
has been studied previously (Granato et al 1991, Lee et al 1991). The central result was that
the Ising disorder induces disorder in the XY degrees of freedom. It is tempting to speculate
that this feature is also present in the Potts–XY model studied here since the special coupling
between the discrete and continuous degrees of freedom is the same. As a result, one would
expect that a domain wall in the Potts variable locally decouples the XY spins, i.e. the Potts
degree of freedom is supposed to be the driving factor of criticality.

3. Simulation method

For simulations of the hybrid model equation (3), we relied on the Monte Carlo (MC) method
(see, e.g., Binder and Heermann (2002) for an introduction). The first preliminary simulations
were based on the Metropolis MC algorithm (Metropolis et al 1953). In each step, a change
of the Potts level (height) as well as a rotation of the rotor (side chain) by some angle �θ

were proposed and this combined move was accepted or rejected according to the Metropolis
criterion.

Close to the critical temperature, the standard Metropolis MC suffers from critical slowing
down, i.e. it becomes difficult to generate enough statistically independent configurations for
a reliable statistics as autocorrelation times increase. To overcome this problem, we used
a cluster MC approach (Swendson and Wang 1987), in particular a modification of Wolff’s
cluster algorithm (Wolff 1989). Here, one deals with two degrees of freedom, one discrete
(Potts state p) and one continuous (orientation angle θ ). Thus, two different kinds of clusters
are grown and flipped in each step—one with respect to p (embedded in an ensemble of fixed
θi’s) and the other with respect to θ (embedded in an ensemble of fixed pi’s).

The treatment of the Potts degree of freedom has to be carried out carefully as
ferromagnetic and anti-ferromagnetic bonds can occur between neighboring rotors. In the
beginning, a pair of values for p is chosen randomly, i.e. (0,1), (0,2), or (1,2), respectively.
Rotors in the remaining Potts state are considered as vacancies in the ongoing cluster growing
step. The effective (local) coupling between rotors i and j is Keff = J ·cos θi,j For Keff > 0 an
ferromagnetic bond is established with probability P = 1 − exp(−Keffδpi=pj

) between rotors
on the same Potts level. If Keff < 0, an anti-ferromagnetic bond is formed with probability
P = 1 − exp(Keffδpi �=pj

) between rotors on different Potts levels. When the cluster is grown,
all Potts levels of the constituting rotors are switched according to the initially chosen pair of
p-values (e.g., 0 ↔ 1).

Following Wolff’s embedding trick for growing and flipping clusters in the XY model
(Wolff 1989) the rotors are projected onto the x-axis. This results in an Ising model of the
x-components Sx

i with random couplings. These ‘effective’ spins are connected by a bond
with probability P = 1 − exp

(
δpi ,pj

· min
[
0, 2K · Sx

i · Sx
j

])
. Note that the Potts states of

the rotors are accounted for by δpi ,pj
meaning that bonds are only formed between rotors in

the same Potts state. Finally, when the cluster is grown, all x-components of the constituting
rotors are inverted.

4. Results

To study the thermodynamic properties of the Potts–XY model (equation (3)) with q = 3 we
conducted extensive MC simulations. The linear system size L (L2 is the total number of

4



J. Phys. A: Math. Theor. 42 (2009) 225001 M Hellmann et al

T/JBk0 0.5 1 1.5 2

q=3 Potts model

Hybrid model

/J〉E〈

L=32

Figure 2. Mean value of the internal energy 〈E〉 as a function of temperature T (in natural
units) for the pure 3-state Potts model (equation (1)): the pure XY model (equation (2)), and the
Potts–XY model (equation (3)). Numerical data obtained by Metropolis Monte Carlo are shown
with symbols, the full lines are guides to the eye. The critical temperature Tc of the Potts–XY
model is shifted to a lower value as compared to the pure models; also an increased slope in the
transition region is observed. For low temperatures, the behavior of the XY model is reproduced.

rotors) was varied in a wide range (16 � L � 512) in order to apply a finite size scaling
analysis (Binder and Heermann 2002).

We studied three observables as a function of the interaction strength K between the spins
and the lateral system size L: The internal energy per spin

E = 1

2L2

∑

i

H(i), (4)

the squared XY magnetization

m2
XY =

( ∑
i m

i
x

)2
+

(∑
i m

i
y

)2

L4
, (5)

and the squared Potts order parameter

m2
p = (n0 − n1)

2 + (n0 − n2)
2 + (n1 − n2)

2

2L4
.

Here, mi
x and mi

y denote the components of the XY spin with index i, while np counts the
number of spins in Potts state p. It is convenient to sample the squared magnetizations
as symmetry provides 〈mp〉 = 〈mXY 〉 = 0. In fact, we analyzed m2

XY and m2
p since we

were unable to find a proper unified order parameter that allows one to follow the phase
behavior of the combined Potts–XY model. Metropolis MC simulations of small systems
revealed significant differences between the Potts–XY model and the two constituting models
(figure 2). The course of the internal energy per spin, E for the Potts–XY model shows a
significantly smaller transition temperature Tc as compared to the pure Potts or XY model.
Furthermore, the transition region is much steeper. From these data, however, it cannot be
determined if the internal energy is continuous at Tc or if there is a finite jump. If the latter
was the case, the phase behavior of the Potts–XY model would be qualitatively different from
that of the constituting models. A close look at figure 2 furthermore shows that for T < Tc the
course of E resembles essentially that of the pure XY model. Thus, the Potts degree of freedom
seems to be ‘frozen’ in this regime while all excitations occur with respect to the XY-degree of
freedom. For more thorough investigations on larger systems, we used the cluster algorithm
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(a) (b)

(c)

Figure 3. (a) Histogram of the internal energy E per spin at Tc for different system sizes. The
double-peak structure indicates two coexisting phases. (b) The logarithm of the relative gap
depth �P (equation (6)) in the double-peaked energy histogram decays to zero as the system size
increases (L → ∞). (c) Also, the energy difference �E between the two phases (i.e., the positions
of the two peaks) appears to vanish in the thermodynamic limit. Solid lines in (b) and (c) indicate
linear fits to the data for the largest system sizes.

described in the preceding section. In contrast to the standard Metropolis MC method this
approach allowed us to study large systems close to Tc due to a reduced dynamic exponent.
Nevertheless, the effects of critical slowing down were just reduced and not diminished. In
figure 3(a), the distribution P(E) of the internal energy is shown for three different system
sizes at T ≈ Tc. The distributions were obtained by reweighting (Ferrenberg and Swendsen
1988) of distributions close to Tc. Apparently, a double-peak structure evolves, indicating the
coexistence of two phases. We considered the logarithm of the relative gap depth

�P = P(〈E〉)max/P (〈E〉)min (6)

at Tc as an indicator for the double-peak structure. This quantity furthermore provides a
measure for the height of the free energy barrier between the coexisting phases. If the infinite
system undergoes a first-order phase transition, this quantity grows with system size (Lee and
Kosterlitz 1990, Lee and Kosterlitz 1991). In the Potts–XY model it appears, however, that
the gap vanishes for L → ∞ (figure 3(b)). In addition, the energy difference between the
two phases, i.e. the distance of the peaks of P(E), approaches zero in the thermodynamic
limit (figure 3(c)). In other words, the distribution at Tc becomes actually a Gaussian, hence
suggesting a second-order phase transition with a single phase existing in the system at Tc.
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(a) (b)

(c)

Figure 4. (a) Scaling behavior of the minimum of the cumulant of the internal energy Vmin
(equation (7)). The cumulant V increases linearly toward an asymptotic value V = 2/3 for
increasing system size, hence indicating a continuous phase transition. (b) The arithmetic mean of
the temperatures at which the specific heat reaches its maximum and V its minimum, Tt , appears
to scale with the system volume L2. The asymptotic value kBTt /J = 0.5983 is close to the critical
temperature Tc . (c) The reduced fourth-order cumulants of the Potts order parameter for different
system sizes cross at T ≈ 0.59818 (apart from minor corrections for very small systems).

Further evidence for a second-order phase transition comes from the reduced fourth order
cumulant (‘Binder cumulant’) of the energy distribution (Binder 1981)

V = 1 − 〈E4〉
3 · 〈E2〉2

. (7)

Far away from a phase transition, P(E) assumes the form of a single Gaussian. In the
thermodynamic limit (L → ∞), this results in a δ-like singularity and hence 〈E4〉 = 〈E2〉2.
This holds true for first- and second-order transitions (Challa et al 1986). So, the fourth-
order cumulant takes on the (trivial) limit value V = 2/3. Distributions with a double-peak
structure are characterized by V �= 2/3. To be more precise, they appear as a dip of V (T ).
Extrapolating the depth Vmin of this dip linearly toward infinite system sizes gives an asymptotic
value of Vmin = 0.667 for the Potts–XY model (figure 4(a)), thus supporting the hypothesis of
a continuous phase transition. Indeed, for a first-order transition the scaling Vmin ∼ L−d is
expected (Challa et al 1986), which appears incompatible with our data.

Furthermore, the temperatures where the specific heat maximum (TC(L)) and the Binder
cumulant minimum (TV (L)) are located, both shift proportional to different powers of the
system size L in the case of a second- and first-order transitions, respectively: for a first-order
transition, TV ;CL ∼ L−d is found (Challa et al 1986), where d denotes the dimension.
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Figure 5. Finite size scaling analysis for the susceptibility χp (equation (8)). Using Tc = 0.59818
and the exponents γ /ν = 1.82 and 1/ν = 1.6 the curves for different system sizes collapse nicely.
These values differ significantly from those conjectured for the pure Potts model.

In contrast, for a continuous transition TV ;C(L) ∼ L−1/ν has been conjectured (Fisher
and Nakanishi 1981) with ν being the critical exponent associated with the correlation
length.

We also tried to obtain the value of 1/ν by other means but were not able to compute
a reliable result (see below). We plotted, however, the arithmetic mean of TV (L) and
TC(L), called Tt , against the inverse system volume, L2, (figure 4(b)) which resulted in an
(approximately) linear behavior. Knowing that TV ;C(L) ∼ L−2 would correspond to a first-
order transition which is highly improbable due to our above results, we only can conclude that
1/ν has a value closer to but smaller than 2. So we may denote the observed phase transition
as ‘strong second order’. In the thermodynamic limit, a temperature Tt = 0.5983 is found
by linear extrapolation which is slightly above the critical temperature Tc found by a more
accurate method (see below).

The distributions of the Potts order parameter and the XY magnetization defined by
equations (5) and (6) appear very similar. In the low temperature limit, they resemble
Gaussian distributions (i.e. δ-function singularities for L → ∞) while for high temperatures
an exponential decay is observed. The reduced fourth-order cumulants UXY and Up converge
in these limiting cases toward 2/3 and −1, respectively. At the critical point, a different,
nontrivial value is obtained. As functions of T, the cumulants of an order parameter calculated
for different system sizes meet at one point (aside from scaling corrections). This point is a
very sensitive measure for Tc. A look at the crossing of the cumulants in figure 4(c) shows that
the curves Up(T ;L) very well coincide at Tc ≈ 0.59818 aside from some minor corrections
due to the finite system size.

Based on our data, it cannot be distinguished if there are two different transitions, namely a
KT transition followed by a second-order transition, or if the curves for UXY (T ;L) will finally
meet at Tc for very large system sizes. The second scenario would indicate a simultaneous
loss of XY and Potts order. If the first scenario should be true, the KT transition has to occur
before the second-order transition because Potts domain walls uncouple the XY spins. The
KT transition could thus only be observed when the great majority of the spins are in the
same Potts state. The onset of this behavior was already observed in the internal energy (cf
figure 2).
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To further approach the origin of the phase transition we studied the susceptibility with
respect to the Potts degree of freedom

χp = L2
〈(
m2

p

)〉
. (8)

Close to a second-order phase transition the susceptibility of the order parameter scales as
χp ∝ Lγ/ν with the lateral system size L. Here, γ and ν are critical exponents for which we
find γ /ν = 1.82(1). This value is significantly different from the value 26/15 ≈ 1.73 that is
theoretically conjectured for the 3-state Potts model (Wu 1982). On the other hand, 1/ν could
not be obtained with good precision. For the scaling shown in figure 5, 1.6 was chosen but in
a wide range between 1.2 and 1.8 similarly good collapsing of the curves can be seen. From
the finite size scaling behavior of Tt that was discussed before, we assume the true value being
rather close to 2. In all, it appears that the XY–Potts model does not fall into the universality
class of the 3-state Potts model.

5. Conclusions

We have investigated the phase transition of a multiplicatively coupled Potts–XY model and
our findings are consistent with the results found for the XY–Ising model (Granato et al 1991).
We also see a continuous temperature-driven transition characterized by critical exponents
distinct from those of the constituting models, especially the Potts model. The discrete degree
of freedom induces the disorder of the continuous one. On the other hand, we also found that
the annealed randomized coupling between the Potts spins due to the XY degree of freedom
leads to a reduced critical temperature and a steeper transition region.

As the randomized coupling of the Potts spins includes the existence of vacancies, it is
interesting to relate our results to the theoretical findings of Nienhuis et al (1979): vacancies
are known to drive the transition of the 3-state Potts model from second to first order. Now,
the coupling of the Potts with the XY model leads to a certain concentration of vacancies,
and indeed, at first glance, the transition appears to change character (steep transition region,
double peak energy histogram). Only more thorough investigations revealed the transition to
be still continuous. Thus, the vacancies evoked by the annealed random coupling drive the
transition toward first order, but do not suffice to fully change its character.

We finally would like to speculate on the impact of our findings on the original biological
problem, the dynamics of hyaluron polymers in the extracellular matrix, that inspired the
XY–Potts model. The ordering of the system for T < Tc with the very steep transition
characteristics indeed may help cells to quickly change the thickness of the protective
extracellular matrix. That is, a cell may use the transition to fix the matrix in a more protective
homogeneous ordered state by tuning the interactions of aggrecan side chains (hence changing
the coupling constant JXY ).
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